Early Learning Goals:

- Have a deep understanding of number to 10 , including the composition of each number
- \quad Subitise (recognise quantities without counting) up to 5
- Verbally count beyond 20 , recognising the pattern of the counting system
- Automatically recall (without reference to rhymes, counting or other aids) number bonds to 5 (including subtraction facts) and some number bonds to 10 , including double facts
- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity
- (Solve real world mathematical problems with numbers up to 10)
Concrete

Physically taking away and removing objects from a whole
(ten frames, Numicon, cubes and other items such as
beanbags could be used).
$4-3=1$

Using number tracks (and drawings) to take away
Use first, then now to tell simple maths stories to practise taking

Key Vocabulary:

First-then-now, take away, how many are left? How many have gone? Less, fewer, difference between, equals, is equal to, balances, number sentence, subtract, subtraction, double, whole, parts

STEM Sentences:

First there were........ Then Left. Now there are.......

NC Learning Objectives:

End of Year One:

- Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
- Represent and use number bonds and related subtraction facts within 20
- Subtract one-digit and two-digit numbers to 20, including 0
- Solve one step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems

End of Year Two

- Solve problems with subtraction, using concrete objects and pictorial representation, including thise involving numbers, quantities and measures, applying their increasing knowledge of mental and written methods
- Recall and use subtraction facts to 20 fluently, and derive related facts up to 100
- Subtract numbers using concrete objects, pictorial representations, and mentally, including a two-digit number and ones; a two-digit number and tens; two two0digit numbers
- Show that subtraction of one number from another cannot be done in any order (not commutative)
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number probelms
Use concrete objects to check and prove whether the calculations
are correct.

Key Vocabulary: How many more? How many left? Leave, less, fewer, minus, subtract, subtraction, difference, count up, count back, equals, partition, exchange, check, inverse, calculation, equals, is equal to

STEM Sentences:

At first there were....., thenwent away. Now there are left.

NC Learning Objectives

End of Year Three

- Subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three digit number and hundreds
- Subtract numbers with up to three digits, using formal written methods of columnar subtraction
- Estimate the answer to a calculation and use unverse operations to check answers
- \quad Solve problems, including missing number problems, using number facts, place value and more complex subtraction

NC Learning Objectives:

End of Year Four

- \quad Subtract numbers with up to four digits using the formal written methods of columnar subtraction where appropriate
- Estimate and use inverse operations to check answers to a calculation
- Solve subtraction two-step problems in contexts, deciding which operations and methods to use

Subtract using an exchange

321-4

4357-2735

3,465	
2,980	$?$

Represent the base 10 pictorially, remembering to show the exchange.

Represent the place value counters pictorially, remembering to show what has been exchanged.

923-756
8^{81} 1 $^{11}{ }^{\prime 3}$
Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because $41=30+11$.

$$
\begin{array}{r}
3 / 41 \\
-26 \\
\hline 15
\end{array}
$$

Formal colum method. Children must
understand what has happened when they have crossed out digits.

234

$-\quad 88$
6

Key Vocabulary:

Subtract, subtraction, exchange, column subtraction, find the missing digit, inverse, decrease, number sentence, calculation, calculate, estimate, mental method, formal method, fact family, adjust, empty box, decimal subtraction

STEM/ model Sentences:

Do you need to make both numbers when you are subtracting? Why? Why is it important to subtract the smallest place value column first? Does it matter which number goes on top? Does it matter if the numbers don't have the same number of digits?

NC Learning Objectives:
End of Year 5

- Subtract whole numbers with more than four digits, including using formal written methods (columnar subtraction)
- \quad Subtract numbers mentally with increasingly large numbers
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why

NC Learning Objectives:

End of Year 6

- Solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why

- Esther uses place value counters to work out 1.615-0.64

Abstract

- Subtraction with multiple exchange

834,501 - 299,999

Key Vocabulary:

Exchange, inverse, missing digits, most effective calculation strategy, column method, mental method, integer, order, operation, brackets, approximate

STEM/ model Sentences: Why is it important to subtract the smallest place value column first? Does it matter which number goes on top? Does it matter if the numbers don't have the same number of digits? What happens if there is more than 9 in a place value column? I column method always the best method? When should we use mental methods?

